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In 1963, Perles [3] observed that, for an infinite cardinal κ, the product κ×κ
is a poset without infinite antichains that cannot be covered by fewer than
κ many chains. This shows that Dilworth’s Theorem [2] fails very badly
for posets with infinite width. In 1987, Abraham [1] showed that these are
essentially the only posets with this property. Specifically, let’s generalize
Perles’s counterexample as follows.

Definition. A poset P is of κ-Perles type if there is a triangular array
〈pζ,ξ : ζ ≤ ξ < κ〉 of elements of P such that if ζ < ζ ′ and ξ > ξ′ then pζ,ξ
and pζ′,ξ′ are incomparable.

Clearly, κ × κ is a poset of κ-Perles type. It is not difficult to show (as I
will below) that a poset of κ-Perles type cannot be covered by fewer than κ
many chains. Abraham’s Theorem can then be stated precisely.

Abraham’s Theorem. If P is a poset without infinite antichains that can-
not be covered by κ many chains, then P is of κ+-Perles type.

In this note, I will present a proof of Abraham’s Theorem. In [1], Abraham
only proves the case κ = ω, and he uses a slightly different characterization
of Perles’s counterexample. However, the proof of the more general result
uses no fundamentally new ideas.

Abraham’s original proof is very clever, but it is difficult to understand
since it involves a complex mixed induction on the antichain rank and the
cofinality of the poset. The proof presented below simplifies this by com-
pletely separating the antichain rank induction and the cofinality induction.
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In the process, I will also isolate an interesting intermediate result — the
Main Lemma.

For the remainder of this note, P is a poset, ≺ is the partial order on
P, and ⊥ is the incomparability relation on P. (The symbol < is reserved
for the order of ordinals.) For � among ≺,�,�,�,⊥ and their negations,
P [� p] denotes the set {q ∈ P : q � p}. Similarly, if Q ⊆ P, we write Q[� p]
for Q ∩ P [� p].

First, let’s see how posets of κ-Perles type do generalize Perles’s original
counterexample.

Perles’s Theorem. If P is of κ-Perles type then P cannot be covered by
fewer than κ many chains. In particular, κ × κ cannot be covered by fewer
than κ many chains.

Proof. The result is clear when κ = ω since we can easily find antichains of
arbitrarily large finite size. So suppose that P =

⋃
α<µCα where ω ≤ µ < κ.

We need to show that some Cα contains two incomparable points.
Let 〈pζ,ξ : ζ ≤ ξ < µ+〉 be a triangular array witnessing that P is of µ+-

Perles type (which it is since µ+ ≤ κ). For each ζ < µ+, there is an α(ζ) < µ
such that {ξ < µ+ : pζ,ξ ∈ Cα(ζ)} is unbounded in µ+. Then there are
ζ < ζ ′ < µ+ such that α(ζ) = α(ζ ′) = α. We can then pick ξ′ < ξ < µ+ such
that pζ,ξ, pζ′,ξ′ ∈ Cα. Now, ζ < ζ ′ and ξ > ξ′, which implies that pζ,ξ ⊥ pζ′,ξ′ .
Therefore, Cα is not a chain.

Note that the proof of Perles’s Theorem does not depend on the ordering
of P at all. In fact, it applies more generally to any graph G: if there is a
triangular array 〈vζ,ξ : ζ ≤ ξ < κ〉 of vertices such that ζ < ζ ′ and ξ′ < ξ
imply that vζ,ξ and vζ′,ξ′ are independent, then G cannot be covered by fewer
than κ many cliques.

The key to the proof of Abraham’s Theorem is the following result.

Main Lemma. If P is a poset such that P [� p] can be covered by κ many
chains for every p ∈ P , then either P can be covered κ many chains, or else
P is of κ+-Perles type.

The proof of the Main Lemma is by induction on the cofinality of P. Although
all of the principal ideas of the proof of the Main Lemma can be found in
Abraham’s proof, Abraham uses P [� p] instead of P [� p] in the hypothesis
and, to compensate for this weaker hypothesis, he also requires that P has
no infinite antichains. This is ultimately how the Main Lemma will be used
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in the proof of Abraham’s Theorem, but the more general formulation shows
potential for more applications.

The proof of Abraham’s Theorem from the Main Lemma uses induction
on the antichain rank of P. This is discussed at length by in [1], so I will only
briefly describe it here. If P has no infinite antichains, then the set AP of all
antichains of P is well-founded when ordered by reverse inclusion. (It is also
well-founded when ordered by inclusion, but this is not as interesting.) Let
arkP be the rank function on AP , i.e.,

arkP (a) = sup{arkP (b) + 1 : a ( b}.

The antichain rank of ark(P ) is then defined by ark(P ) = arkP (∅). An
important fact to note is that

ark(P [⊥ p]) = arkP ({p}) < arkP (∅) = ark(P )

for every p ∈ P.

1 Proof of the Main Lemma

The proof is by induction on the cofinality of P , which is the smallest size of
a set Q ⊆ P with the property that P =

⋃
q∈Q P [� q]. The result is trivial

for posets of cofinality 1, so suppose P is a poset of cofinality λ > 1, and
that the result is known for all smaller cofinalities. There are then two cases
depending on the cofinality of λ, as an ordinal. Note that cof(λ) ≤ κ exactly
when λ is the union of κ sets of size strictly less than λ.

Case cof(λ) ≤ κ. We can then write P =
⋃
α<κ Pα where each Pα has

cofinality less than λ. By the induction hypothesis, each Pα is covered by
κ many chains, and gathering these chains together we obtain a cover of P
with κ many chains.

Case cof(λ) > κ. Fix an enumeration 〈rξ : ξ < λ〉 of a cofinal subset of
P. Without loss of generality, we may assume that if ξ′ < ξ, then rξ � rξ′ .
For ξ < λ, define:

a(p) = min{ξ < λ : p � rξ},

b(p) = min{ξ < λ : p � rξ}.

Note that a(rξ) = ξ for every ξ < λ. Let’s record the following basic facts,
which are easy to prove.
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Lemma 1.1. b(p) ≤ a(p).

Lemma 1.2. If a(p) < b(q) then p ≺ q.

Lemma 1.3. If p � q then a(p) ≤ a(q) and b(p) ≤ b(q).

Lemma 1.4. If a(p) > a(q) and b(p) < b(q) then p ⊥ q.

Facts 1.1 and 1.4 suggest how the values of a(p) and b(p) may be related to
the ξ and ζ coordinates of a triangular array as required for posets of Perles
type. This is indeed the way that a(p), b(p) will be used in Lemma 1.5. Fact
1.2 will be useful in Lemma 1.6.

For β < λ, define
R(β) = {a(p) : b(p) = β}.

Note that R(β) ⊆ [β, λ) by Fact 1.1. Then consider the partition λ = B ∪U
where:

B = {β < λ : supR(β) < λ},
U = {β < λ : supR(β) = λ}.

We will now show that P can be covered by κ many chains when |U | ≤ κ,
and that P is of κ+-Perles type when |U | > κ. The Main Lemma follows
immediately.

Lemma 1.5. If |U | > κ, then P is of κ+-Perles type.

Proof. Let 〈βζ : ζ < κ+〉 enumerate the first κ+ elements of U. We will define
a triangular array 〈pζ,ξ : ζ ≤ ξ < κ+〉 of elements of P such that b(pζ,ξ) = βζ ,
and ξ < ξ′, then a(pζ,ξ) < a(pζ′,ξ′) for all ζ < ξ and ζ ′ < ξ′. This array
witnesses that P is of κ+-Perles type. Indeed, if ζ ′ < ζ and ξ < ξ′, then
a(pζ,ξ) < a(pζ′,ξ′) and b(pζ,ξ) > b(pζ′,ξ′). Therefore, pζ,ξ ⊥ pζ′,ξ′ by Fact 1.4.

To construct the array, we proceed by induction on ξ < κ+. Suppose we
have defined pζ′,ξ′ for all ζ ′ ≤ ξ′ < ξ. We will now define pζ,ξ by induction on
ζ ≤ ξ.

First, let α0 = sup{a(pζ′,ξ′) : ζ ′ ≤ ξ′ < ξ} and pick p0,ξ such that b(p0,ξ) =
β0 and a(p0,ξ) > α0. We can always do this since R(β0) is unbounded in λ
and λ has cofinality greater than κ.

Next, suppose that 1 ≤ ζ ≤ ξ and that we have defined pζ′,ξ for ζ ′ < ζ.
Let αζ = sup{a(pζ′,ξ) : ζ ′ < ζ} and pick pζ,ξ so that b(pζ,ξ) = βζ and
a(pζ,ξ) > αζ . Again, we can always do this since R(βζ) is unbounded in λ
and λ has cofinailty greater than κ.

This completes the construction, the properties are easily verified.
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Lemma 1.6. If |U | ≤ κ, then P can be covered by κ many chains.

Proof. Note that since

{p : b(p) = β} ⊆ P [� pβ],

we see that PU = {p : b(p) ∈ U} can be covered by κ many chains. So it
suffices to show that the complement of PU , namely the set PB = {p : b(p) ∈
B}, can also be covered by κ many chains.

Let Γ be the closed unbounded set of all γ < λ such that supR(β) < γ
for every β ∈ B ∩ γ, and let 〈γζ : ζ < θ〉 be the natural enumeration of Γ.
(Note that γ0 = 0.) For each ζ < θ, let

Qζ = {p : γζ ≤ b(p) ≤ a(p) < γζ+1}.

Clearly, PB ⊆
⋃
ζ<θQζ . Also note that Qζ has cofinality at most γζ+1 < λ.

So, by the induction hypothesis, Qζ =
⋃∞
α<κCζ,α where each Cζ,α is a chain.

Note that if ζ < ξ and p ∈ Qζ , q ∈ Qξ, then p ≺ q by Fact 1.2, since

a(p) < γζ+1 ≤ γξ ≤ b(q).

It follows that each Cα =
⋃
ζ<θ Cζ,α is a chain, and PB ⊆

⋃
α<κCα.

2 Proof of Abraham’s Theorem

The proof is by induction on the antichain rank of P , as described above.
Suppose we know that Abraham’s Theorem is true for posets of antichain
rank less than α and that P is a poset of antichain rank α, which is not of
κ+-Perles type.

As previously observed, for every p ∈ P , we have ark(P [⊥ p]) < ark(P ).
Moreover, P [⊥ p] can’t be of κ+-Perles type. Thus, by the inductive hypoth-
esis, we obtain the following fact.

Lemma 2.1. For every p ∈ P, P [⊥ p] can be covered by κ many chains.

If we had a way to cover P with at most κ many sets of the form P [⊥ p],
then the result would follow immediately. For example, if P has a maximal
chain of size at most κ, then we would be done. Unfortunately, there is no
obvious reason why this would be the case. So we need to work a bit more.
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Let’s first narrow the types of posets we need to consider. The incompa-
rability relation ⊥ defines a graph on P, namely, the incomparability graph
of P. Note that if Q1, Q2 are distinct connected components of this graph,
then either Q1 ≺ Q2 or Q1 � Q2. Thus P can be covered by κ many chains
if and only if each connected component of the incomparability graph can be
covered by κ many chains. We may thus assume that the incomparability
graph of P is connected.

The Main Lemma tells us that we only need to show that P [� p] can be
covered by κ many chains for each p ∈ P. Observe that

P [� p] = {p} ∪ P [⊥ p] ∪ P [≺ p].

So, by Lemma 1, we really only need to show that P [≺ p] can be covered
by κ many chains. It turns out that this observation is a little misleading.
The correct way to view this decomposition is that {p} is the set of elements
of distance 0 from p in the incomparability graph of P [� p], P [⊥ p] are
the elements of distance 1 from p in the incomparability graph of P [� p],
and finally P [≺ p] are the elements of distance at least 2 from p in the
incomparability graph of P [� p].

So let’s fix p0 ∈ P, and write Dn for the set of elements of distance
n from p0 in the incomparability graph of P [� p0]. We only assumed that
the incomparability graph of P was connected, but it is easy to see that
the incomparability graph of P [� p0] is also connected; so this is indeed a
decomposition of P [� p0].

Now we want to show that each Dn can be covered by κ many chains.
This is clear for D0 = {p0} and D1 = P [⊥ p0]. For D2, this is not immediately
clear. By the dual of the Main Lemma, it suffices to show that D2[⊀ q] can be
covered by κ many chains for each q ∈ D2. This is not immediately obvious,
but Abraham has a neat trick to do this.

Again, it suffices to show that D2[� q] can be covered by κ many chains.
By definition of D2, there is a p ∈ D1 such that p ⊥ q. Clearly, D2[� q] ∩
P [� p] = ∅. Less clearly, D2[� q] ∩ P [� p] = ∅. (If r � p, then r ⊥ p0 and
so r /∈ D2.) Therefore, D2[� q] ⊆ P [⊥ p] and hence D2[� q] can be covered
by κ many chains by Lemma 2.1. Therefore, D2 can also be covered by κ
many chains by the dual of the Main Lemma.

The heart of the previous trick is the fact that if p ∈ D1 and q ∈ D2 are
incomparable, then D2[⊀ q] ⊆ P [⊥ p] ∪ P [⊥ q]. This is also true for p ∈ D0

and q ∈ D1. In fact, it is true in general.
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Lemma 2.2. If q ∈ Dn+1 and p ∈ Dn are incomparable, then

Dn+1[⊀ q] ⊆ P [⊥ p] ∪ P [⊥ q].

Proof. We show that Dn+1[� q] ⊆ P [⊥ p]. Again it is clear that Dn+1[� q]∩
P [� p] = ∅. Let’s show that Dn+1[� q] ∩ P [� p] = ∅. By definition of Dn,
there is a sequence

p0 ⊥ p1 ⊥ · · · ⊥ pn−1 ⊥ pn = p.

Suppose that p � r. Since pn−1 ⊥ pn = p, we cannot have r � pn−1, so
it must be the case that either pn−1 ⊥ r or pn−1 � r. In the case pn−1 ⊥ r,
the distance from p0 to r is at most n, so r /∈ Dn+1. In the case pn−1 � r, we
can repeat the same argument to conclude that either pn−2 ⊥ r or pn−2 � r.
Repeating as necessary, we see that either r ∈ Di for some i ≤ n, or else
p0 � r. In any case, we conclude that r /∈ Dn+1.

We have shown that Dn+1[� q]∩P [� p] and Dn+1[� q]∩P [� p] are both
empty. So it must be the case that Dn+1[� q] ⊆ P [⊥ p].

By Lemma 2.1 and 2.2, we see that Dn+1[⊀ p] can be covered by κ many
chains for every p ∈ Dn+1. It follows from the dual of the Main Lemma that
each Dn can be covered by κ many chains. Hence, P [� p0] can be covered
by κ · ω = κ many chains. Since p0 was arbitrary, it follows from the Main
Lemma that P can also be covered by κ many chains. This concludes the
proof of Abraham’s Theorem.
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