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The Ultrafilter Theorem has many equivalent forms over the basic axioms
ZF for set theory. One of the most useful and versatile is the Propositional
Completeness Theorem:

(PCT) Every consistent propositional theory is satisfiable.

A lesser known equivalent is the Artin–Schreier Theorem.

(AST) Every formally real field is orderable.

The equivalence of the Artin–Schreier Theorem with the Ultrafilter Theorem
was established by Berr, Delon, and Schmid in 1999. [1] The proof given
there is somewhat involved algebraically. The goal of this note is to give an
elementary proof of the following.

Theorem. ZF ` PCT↔ AST.

We will prove each direction separately. Our proof of the forward implication
goes through even without the Axiom of Infinity. Our proof of the reverse
implication implicitly uses the existence of the real numbers, but we doubt
that this assumption is necessary.

ZF ` PCT→ AST

We will prove that a slightly stronger form of AST follows from PCT. There
are two equivalent definition of formally real fields: the first says that −1
is not a sum of squares, the second says that a sum of nonzero squares is
nonzero. The latter has the advantage of being meaningful over any ring and
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this is the one we will use in what follows. Assuming PCT, we will show that
a (commutative) ring is orderable if and only if it is a formally real domain.

Let R be a commutative ring. We associate with each x ∈ R a proposi-
tional variable Px, which is intended to mean “x is positive.” The theory TR
then consists of the addition and multiplication schemes

Px ∧ Py → Px+y and Px ∧ Py → Pxy

for x, y ∈ R, together with the zero axiom and the dichotomy scheme

¬P0, and Px ∨ P−x

for nonzero x ∈ R.

Proposition 1.

(a) The theory TR is consistent if and only if R is a formally real domain.

(b) The theory TR is satisfiable if and only if R is an orderable domain.

Since the axioms of TR reflect exactly the axioms of order, part (b) is
obvious. For part (a), the forward direction is also easy to see. Indeed, if
x, y and z1, . . . , zn are nonzero elements of R then TR proves that

Pxy ∨ P−xy and Pz21+···+z2n ,

which implies that xy and z21 + · · · + z2n are both nonzero, assuming TR is
consistent.

For the reverse direction of (a), suppose that R is a formally real domain.
We will show that TR is consistent.

Note that any variable assignment such that P0 = ⊥ automatically sat-
isfies all instances of the multiplication scheme which involve P0, since these
are all of the form

Px ∧ P0 → P0 or P0 ∧ Py → P0

owing to the fact that R is an integral domain. Also, the only nontrivial
instances of the addition scheme which involve P0 are those of the form

Px ∧ P−x → P0,
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which are equivalent to ¬Px ∨ ¬P−x when P0 = ⊥. Therefore, any truth
assignment such that P0 = ⊥ and P−x = ¬Px for x 6= 0 automatically satis-
fies all axioms of TR except for instances of the addition and multiplication
schemes that do not involve P0.

Let x1, . . . , xn be nonzero elements of R such that xi±xj 6= 0 when i 6= j.
We will find a partial variable assignment that satisfies all axioms of TR that
mention only propositional variables from P0, P±x1 , . . . , P±xn . For simplicity,
we will call such axioms “relevant.”

Associate each signature σ ∈ {±1}n to the partial truth assignment where
Pσixi = >, P−σixi = ⊥, and P0 = ⊥. By the above observations, this partial
truth assignment satisfies all relevant axioms, with the possible exception of
some instances of the addition and multiplication schemes that do not involve
P0. Note that:

• σixi + σjxj + σkxk = 0 iff this truth assignment fails to satisfy the
relevant axiom Pσixi ∧ Pσjxj → Pσixi+σjxj , and

• σixiσjxj+σkxk = 0 iff this truth assignment fails to satisfy the relevant
axiom Pσixi ∧ Pσjxj → Pσixiσjxj .

Since R is an integral domain, the truth assignment associated to σ satisfies
all relevant axioms if and only if pσqσ 6= 0, where

pσ =
∏

1≤i,j,k≤n

(σixi + σjxj + σkxk),

qσ =
∏

1≤i,j,k≤n

(σixiσjxj + σkxk).

If we expand the sum ∑
σ∈{±1}k

pσqσ

into monomials of the form

(σ1x1)
e1 · · · (σkxk)ek

we see that only those with all even exponents e1, . . . , ek do not cancel out.
SinceR is formally real, the remaining terms form a nonempty sum of nonzero
squares whose value is therefore nonzero. It follows that pσqσ 6= 0 for some
σ ∈ {±1}n, which gives a variable assignment satisfying all relevant axioms.
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ZF ` AST→ PCT

We will use N(X, Y, Z) to denote the propositional connective

(X ∨ Y ∨ Z) ∧ (¬X ∨ ¬Y ∨ ¬Z).

In other words, N(X, Y, Z) holds iff X, Y, Z are not all equal. In 1978,
Schaefer observed that this simple connective is suprisingly expressive. [2]

Lemma 2. Every propositional theory T is equisatisfiable with a proposi-
tional theory S whose axioms are all of the form N(X, Y, Z), where X, Y, Z
are either propositional variables or the propositional constant >.

Proof. We may suppose that all of the axioms of the theory T are disjunctions
of exactly three propositional literals. For each propositional variable X,
introduce a fresh variable symbol X ′ with the axiom N(X ′, X,X) (which is
equivalent to X ′ ↔ ¬X). Let T ′ be obtained from T by replacing every
occurrence of the negative literal ¬X by the variable X ′. Every axiom X ∨
Y ∨ Z in T ′ is equisatisfiable with

N(X, Y, U), N(Y, Z, V ), N(U, V,>),

where U, V are fresh variable symbols. Thus T is equisatisfiable with the
theory S whose axioms consist of N(X ′, X,X) for every propositional vari-
able X, together with N(X, Y, U), N(Y, Z, V ), N(U, V,>) for every axiom
X ∨ Y ∨ Z of T ′.

The reason that we want a theory of this form is that the connectiveN(X, Y, Z)
can be emulated by the order properties of the simple polynomial

xy + yz + zx

as explained by the following lemma.

Lemma 3. Let R be an ordered integral domain and let x, y, z ∈ R be such
that 1 ≤ x2, y2, z2 ≤ 2.

• If x, y, z > 0 or x, y, z < 0 then 3 ≤ xy + yz + zx.

• Otherwise, xy + yz + zx ≤ 0.
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Proof. The first statement is clear. For the second statement, suppose that
x < 0 < y. (All other cases are symmetric.) If z > 0, then

xy + yz + zx = x(y + z) + yx ≤ −2 + 2 = 0.

If z < 0, then

xy + yz + xz = y(x+ z) + xz ≤ −2 + 2 = 0.

Let S be a propositional theory as in Lemma 2. We will successively
construct three fields K ⊆ L ⊆ M. The first two will be unconditionaly
formally real. The last will satisfy the following proposition.

Proposition 4.

(a) If the theory S is consistent then the field M is formally real.

(b) If the field M is orderable then the theory S is satisfiable.

This is not as sharp an equivalence as Proposition 1, but it is enough to give
the required implication. While we will not prove this here, we know that
the converse of (a) is true. The converse of (b) is consistently false in ZF,
but it is true assuming the Ordering Principle.

For each propositional variable X associate a variable symbol x and let
K be the field of rational functions in these variables with coefficients in Q.
Let L be the field obtained by adjoining the square roots

√
x2 − 1 and

√
2− x2,

where x ranges over the variable symbols. This is not the field that will
help us deduce the PCT from the AST, but let us pause for a moment and
convince ourselves that L is formally real by finding embeddings of finitely
generated subfields of L into the real numbers.

Let K0 = Q(x1, . . . , xn) ⊆ K and let

L0 = K0

[√
x21 − 1,

√
2− x21, . . . ,

√
x2n − 1,

√
2− x2n

]
⊆ L.

In order to faithfully embed K0 into the real numbers, it suffices to assign
algebraically independent transcendental values to each of x1, . . . , xn. Such
values can be found in any open interval, in particular we can find suitable
α1, . . . , αn ∈ (1,

√
2). Since 1 < α2

i < 2 we can then extend this embedding to
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all of L0. There are 4n different ways to do this, but we may as well pick the
one where

√
x2i − 1 and

√
2− x2i get mapped to the positive square roots

of α2
i − 1 and 2 − α2

i , respectively. There was no reason to pick positive
α1, . . . , αn, we can replace any number of the αi by their negatives to obtain
the same effect. Given a signature σ ∈ {±1}n, let Lσ0 denote the copy of L0

in R resulting from the alternate assignment xi 7→ σiαi (but the same choce
of square roots). Abusing notation, we will also use σ for the isomorphism
from L0 to Lσ0 .

The field M we will be interested in is obtained from L by adjoining a
square root √

−xy − yz − zx

for each axiom N(X, Y, Z) of S. Here and elsewhere, we understand that
x = 1 when X is the constant >, and similarly for y, z and Y, Z. For example,
if N(>,>,>) were an axiom of S, M would contain a sqaure root

√
−3. Such

M would not be formally real, but this is fine since N(>,>,>) is simply false.

Proof of (a). Let X1, . . . , Xn be propositional variables and let S0 be the
finite collection of axioms of S that only involve variables from X1, . . . , Xn or
the constant X0 = >. Let K0 and L0 be as above for the associated variables
x1, . . . , xn. Let M0 ⊆ M be similarly obtained by adjoining square roots to
−xixj−xjxk−xkxi for each axiom N(Xi, Xj, Xk), where we understand that
x0 = 1.0

Since S is consistent, we can find a variable assignment for X1, . . . , Xn

that satisfies the finite set S0. Let σ ∈ {±1}n be such that σi = 1 iff Xi = >
in this assignment. Let L0 and Lσ0 be as discussed above. By Lemma 3, for
each axiom N(Xi, Xj, Xk) ∈ S0 we must have

αiαj + αjαk + αkαi ≤ 0

(where we understand that α0 = 1). Therefore, we can extend the embedding
σ of L0 into Lσ0 by assigning√

−xixj − xjxk − xkxi

to the positive (say) square root√
−αiαj − αjαk − αkαi.

This results in a subfield Mσ
0 of the reals which is isomorphic to M0.
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It follows immediately that M0 is formally real. Since every finitely gener-
ated subfield of M is contained in some such M0, it follows that M is formally
real.

Proof of (b). If < is an ordering of M , then 1 ≤ x2 ≤ 2 for every variable
x and xy + yz + zx ≤ 0 for each axiom N(X, Y, Z) of S. It follows from
Lemma 3 that the variable assignment

X =

{
> when x > 0

⊥ when x < 0

satisfies S.
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